Separations of Matroid Freeness Properties

نویسندگان

  • Arnab Bhattacharyya
  • Elena Grigorescu
  • Jakob Nordström
  • Ning Xie
چکیده

Properties of Boolean functions on the hypercube that are invariant with respect to linear transformations of the domain are among some of the most well-studied properties in the context of property testing. In this paper, we study the fundamental class of linear-invariant properties called matroid freeness properties. These properties have been conjectured to essentially coincide with all testable linear-invariant properties, and a recent sequence of works has established testability for increasingly larger subclasses of matroid freeness properties. One question that has been left open, however, is whether the infinitely many syntactically different matroid freeness properties recently shown to be testable in fact correspond to new, semantically distinct properties. This is a crucial issue since it has also been shown previously that there exist subclasses of matroid freeness properties for which an infinite set of syntactically different representations collapse into one of a small, finite set of properties, all previously known to be testable. An important question is therefore to understand the semantics of matroid freeness properties, and in particular when two syntactically different properties are truly distinct. We shed light on this problem by developing a method for determining the relation between two matroid freeness properties P and Q. Furthermore, we show that there is a natural subclass of matroid freeness properties such that for any two properties P and Q from this subclass, a strong dichotomy must hold: either P is contained in Q or the two properties are “well separated” from one another. As an application of this method, we exhibit new, infinite hierarchies of testable matroid freeness properties such that at each level of the hierarchy, there are explicit functions that are far in Hamming distance from all functions lying in the lower levels of the hierarchy. Our key technical tool is an apparently new notion of maps between linear matroids, which we call labeled matroid homomorphisms, that might be of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroid Representations and Free Arrangements

We show that Terao's Conjecture ("Freeness of the module of logarithmic forms at a hyperplane arrangement is determined by its abstract matroid") holds over fields with at most four elements. However, an example demonstrates that the field characteristic has to be fixed for this. 1. Free arrangements The present study continues an investigation of the connection between algebraic and combinator...

متن کامل

Structural properties of fuzzy graphs

Matroids are important combinatorial structures and connect close-lywith graphs. Matroids and graphs were all generalized to fuzzysetting respectively. This paper tries to study  connections betweenfuzzy matroids and fuzzy graphs. For a given fuzzy graph, we firstinduce a sequence of matroids  from a sequence of crisp graph, i.e.,cuts of the fuzzy graph. A fuzzy matroid, named graph fuzzy matro...

متن کامل

Deinking of Laser Printed Copy Paper by Chemical Different Treatments and Effect on Optical and Strength Properties of Paper

Paper recycling in an increasingly environmentally conscious world is gaining importance. Withrapid developments in deinking processes for the reuse of secondary fibers being made, therecycling process is become more and more efficient. This work investigated the effect ofchemical different treatments including H2O2 and NaOH on repulping and flotation operationsduring the deinking of laser prin...

متن کامل

The Structure of Crossing Separations in Matroids

Oxley, Semple and Whittle described a tree decomposition for a 3-connected matroid M that displays, up to a natural equivalence, all non-trivial 3-separations of M . Crossing 3-separations gave rise to fundamental structures known as flowers. In this paper, we define a generalized flower structure called a k-flower, with no assumptions on the connectivity of M . We completely classify k-flowers...

متن کامل

-torsion free Acts Over Monoids

In this paper firt of all we introduce a generalization of torsion freeness of acts over monoids, called -torsion freeness. Then in section 1 of results we give some general properties and in sections 2, 3 and 4 we give a characterization of monoids for which this property of their right Rees factor, cyclic and acts in general  implies some other properties, respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010